摘 要
隨著超聲波傳感器產業的發展趨勢向微小型化、高集成度、低成本、高性能轉變,基于微機電系統(Microelectromechanical Systems)的超聲換能器應運而生。其中,具有幾何結構簡單、低阻抗、易集成等優勢的壓電式微機械超聲換能器(Piezoelectric Micromachined Ultrasonic Transducer,PMUT)成為近年來研究的熱點,并在生物醫學超聲成像方面有著重大應用價值。隨著超聲成像需求的不斷提高,具有更高分辨率的高頻超聲換能器成為當下和未來的發展方向,這就需要PMUT 單元尺寸在微米尺度,具有良好的幾何結構,并且采用高性能壓電薄膜材料。擁有良好壓電響應且制備工藝已非常成熟的鋯鈦酸鉛(PZT)薄膜依然是當前十分重要的 PMUT 核心壓電材料,此外,研究人員發現在具有高聲速、溫度穩定性好、寬帶隙等優勢的氮化鋁(AlN)薄膜中摻雜Ⅲ族過渡金屬元素鈧(Sc)能夠明顯改善其自身壓電性能,這對 PMUT 產業領域有著巨大吸引力;谏鲜霰尘,本論文主要針對基于 PZT 薄膜和 Sc 摻雜 AlN(ScxAl1-xN)薄膜的 PMUT展開研究,進行了如下四個方面的研究工作:
。1)研究了 Pt/Ti/SiO2/Si 襯底上 PZT 薄膜的晶體結構及電學性能,結果表明該 PZT 薄膜結構致密,常溫下在 1 kHz 頻率時損耗僅有 0.027,通過壓電力顯微鏡對 PZT 薄膜微區進行表征,薄膜表現出良好的壓電響應。然后,研究了Mo/SiO2/SOI 襯底上 Sc 含量為 29%的 Sc0.29Al0.71N 薄膜的晶體結構及其在高壓的演化,結果表明 Sc0.29Al0.71N 薄膜各層分界清晰,通過電子衍射圖分析得到薄膜表現為六方相多晶薄膜,并計算得到其晶格參數 a 和 c 分別為 3.0997 ? 和 4.9569?.此外,還研究了 Sc 元素在 Sc0.29Al0.71 薄膜中的結合形式以及 Sc0.29Al0.71 薄膜的晶體結構在高壓下的演變行為,Sc0.29Al0.71 薄膜在 20 GPa 的高壓下并沒有產生纖鋅礦到巖鹽礦的相變,這表明該薄膜具有較強的耐高壓特性。
。2)采用有限元方法(Finite Element Method,FEM)建立了基于 PZT 薄膜的三維 PMUT 仿真模型,在(0,1)模態下,研究 PMUT 壓電薄膜厚度和尺寸、頂部電極直徑和形狀、底部空腔直徑和形狀、襯底頂層硅厚度等一系列幾何參數對PMUT 諧振頻率、靜態靈敏度、有效機電耦合系數(????eff2 )等性能的影響,實現了性能調控,研究發現底部空腔直徑和頂層硅厚度能夠對 PMUT 的諧振頻率和靜態靈敏度產生較為深刻的影響。此外,還對水域下 PMUT 模型的動態傳輸接收特性進行了模擬仿真,經幾何優化后獲得了基于 PZT 薄膜的高頻 PMUT 三維有限元模型,其諧振頻率可達 22.12 MHz,有效機電耦合系數為 5.13%,當反射物距離 PMUT 表面中心 300 μm 處時,相對脈沖回波靈敏度級約為-44.7 dB.
。3)建立了基于 Sc0.29Al0.71 薄膜的 PMUT 三維有限元模型,經過幾何優化后的 PMUT 模型其諧振頻率可達 23.565 MHz,有效機電耦合系數為 2.5%,當反射物距離 PMUT 表面中心 300 μm 處時,相對脈沖回波靈敏度級約為-50.3 dB.
此外,還嘗試將沿[011]方向極化的 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-0.30PT)單晶薄膜應用于 PMUT 有限元模型中,探索了在不同頂部電極和底部空腔形狀配置下的 PMUT 模型性能表現。研究發現,這種新型壓電材料以及新型幾何結構為今后實現 PMUT 性能的提升提供了可能。
。4)根據 PMUT 建模仿真幾何優化后的結構參數制備獲得了基于 PZT 薄膜 PMUT 單元及 50×50 陣列原型器件并進行表征測試。結果顯示 PMUT 單元底部空腔刻蝕情況良好,成功檢測到 PMUT 單元器件(0,1)模態下的諧振頻率為 25.87 MHz,根據脈沖回波測試得到回波信號最大幅值為 4.14 mV.本論文制備出的 PMUT 原型器件有望滿足高分辨率生物醫學超聲成像應用的高頻需求。
關鍵詞: PMUT;PZT 薄膜;ScxAl1-xN 薄膜;有限元仿真
Abstract
As the development trend of the ultrasonic sensor industry shifts to microminiaturization, high integration, low cost, and high performance, ultrasonic transducers based on Microelectromechanical Systems (MEMS) have emerged. Among them, the Piezoelectric Micromachined Ultrasonic Transducer (PMUT), which has the advantages of simple geometric structure, low impedance, and easy integration, has become a research hotspot in recent years, and has great application value in biomedical ultrasound imaging. As the demand for ultrasound imaging continues to increase, high- frequency ultrasound transducers with higher resolution have become the current and future development direction. This requires the PMUT unit size to be on the micron scale, with a good geometric structure, and to use high-performance piezoelectric thin film. Lead zirconate titanate (PZT) thin film with good piezoelectric response and mature preparation process is still the current important PMUT core piezoelectric material. In addition, the researchers found that doping group III transition metal element scandium (Sc) in aluminum nitride (AlN) film with the advantages of high sound velocity, good temperature stability, and wide band gap can significantly improve its own piezoelectric properties, which has great appeal to the PMUT industry. Based on the above background, this thesis mainly focuses on PMUT based on PZT film and Sc-doped AlN (ScxAl1-xN) film, and has conducted the following three aspects of research work:
。1) The crystal structure and electrical properties of the PZT thin film on Pt/Ti/SiO2/Si substrate were studied. The results showed that the PZT thin film had a compact structure, and the loss was only 0.027 at a frequency of 1 kHz at room temperature. The PZT thin film micro-domains were characterized by a piezoelectric force microscope, and the thin film showed a good piezoelectric response. Then, the crystal structure of Sc0.29Al0.71N thin film with a Sc content of 29% on Mo/SiO2/SOI substrate and its changes under high pressure were studied. The results revealed that Abstract Shanghai Normal University of Master Philosophy the boundaries of each layer of the Sc0.29Al0.71N thin film were clear. The electron diffraction pattern analysis showed that the thin film appeared to be a hexagonal polycrystalline film. The lattice parameters a and c of Sc0.29Al0.71N thin film were calculated to be 3.0997 ? and 4.9569 ?, respectively. In addition, the combination of Sc element in the Sc0.29Al0.71N thin film and the evolution behavior of the crystal structure of the Sc0.29Al0.71N thin film under high pressure was studied. There was no wurtzite to rock salt ore phase transition under the high pressure of 20 GPa, indicating that the film has strong high-pressure resistance.
。2) The finite element method (Finite Element Method, FEM) was used to establish three-dimensional PMUT simulation model based on PZT thin film. In the (0,1) mode, the influence of a series of geometric parameters such as the thickness and size of the PMUT piezoelectric film, the diameter and shape of the top electrode, the diameter and shape of the bottom cavity, and the thickness of the silicon on the top of the substrate, on the resonance frequency, static sensitivity, effective electromechanical coupling coefficient (eff2 ) and other performance effects of the PMUT were studied. The performance control was achieved. The study found that the bottom cavity diameter and the top silicon thickness can have a profound impact on the resonant frequency and static sensitivity of the PMUT. In addition, the dynamic transmission and reception characteristics of the PMUT model under water are also simulated. After geometric optimization, the three-dimensional finite element model of high-frequency PMUT based on PZT thin film was obtained. Its resonant frequency can reach 22.71 MHz, and the effective electromechanical coupling coefficient is 5.13%. When the reflector is 300 μm away from the center of the PMUT surface, the relative pulse echo sensitivity levelis about -44.7 dB.
。3) A three-dimensional finite element model of PMUT was established based on Sc0.29Al0.71 thin film. The resonant frequency of the PMUT model can reach 23.565 MHz, and the effective electromechanical coupling coefficient is 2.5%, after geometric optimization. When the reflector is 300 μm away from the center of the PMUT surface, the relative pulse echo sensitivity level is about -50.3 dB. In addition, an attempt was made to apply [011] poled 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-0.30PT) thin film to the PMUT finite element model, the performance of the PMUT model under different top electrode and bottom cavity shape configurations was explored. The study found that this new piezoelectric material and new geometric structure provide the possibility to realize the improvement of PMUT performance in the future. Shanghai Normal University of Master Philosophy Abstract
。4) According to the optimized structural parameters of the PMUT modeling and simulation geometry, the PMUT unit and the 50×50 array prototype devices based on the PZT thin film were obtained and characterized. The results show that the cavity at the bottom of the PMUT unit is well etched. It is successfully detected that the resonance frequency of the PMUT unit device (0,1) mode is 25.87 MHz. The relative pulse echo sensitivity level is calculated by the pulse echo result to be about -58.5 dB. The PMUT prototype device prepared in this thesis is expected to meet the high- frequency requirements of high-resolution biomedical ultrasound imaging applications.
Keywords: PMUT; PZT thin film; ScxAl1-xN thin film; FEM simulation
目錄
第 1 章 緒論
1.1 引言
法國科學家 Paul Langevin 在 1917 年第一次使用了石英晶體制作的超聲換能器,同時采用超聲對水下目標進行探測,并將該方法稱為"水下定位法".這時,超聲已作為工程技術出現[1].在過去的幾十年里,超聲波技術已經越來越廣泛地在工業和生物醫學中應用,例如醫學成像,指紋傳感,無損評估,粒子和細胞操縱[2-6].超聲波傳感器利用超聲波換能器來實現聲學和電學信號轉換。隨著對超聲成像領域需求的不斷提高,基于微機電系統(Microelectromechanical Systems,簡 稱 MEMS ) 的 超 聲 換 能 器 應 運 而 生 , 它 被 稱 為 微 機 械 超 聲 換 能 器(Micromachined Ultrasonic Transducer,簡稱 MUT),相比于傳統超聲換能器,MUT 易于陣列化、集成化,具有微小型、更好的聲耦合、更低的功耗等優勢,近年來在醫學超聲成像和指紋傳感領域開始得到了廣泛的應用,MUT 已成為傳統超聲換能器的一種很有前途的替代方案。
一般來說,根據工作原理的不同,MUT 可分為兩類:電容式微機械超聲換能器(Capacitive Micromachined Ultrasonic Transducer,簡稱 CMUT)和壓電式微機械超聲換能器(Piezoelectric Micromachined Ultrasonic Transducer,簡稱 PMUT)[7].其中,采用壓電材料的正、逆壓電效應工作原理的 PMUT 是近年來研究熱點。
隨著新型壓電材料的誕生與發展,基于新型幾何結構和壓電材料的 PMUT 為其應用開闊了市場,促使微小型化、高集成度、高性能、低成本成為智能超聲波傳感技術發展的新方向。因此,本論文將圍繞面向生物醫學成像的 PMUT 展開設計與制備方面的研究。
1.2 微機械超聲換能器的研究概述
1.2.1 微機電系統簡介
1.2.2 電容式微機械超聲換能器簡介
1.2.3 壓電式微機械超聲換能器簡介
1.3 生物醫學超聲成像概述
1.3.1 超聲成像原理與技術
1.3.2 超聲脈沖回波法
1.4 壓電材料的研究概述
1.4.1 壓電效應
1.4.2 壓電方程
1.4.3 PMUT 壓電材料的選擇
1.5 問題的提出與研究內容
1.5.1 問題的提出
1.5.2 研究內容
第 2 章 實驗內容與實驗方法
2.1 引言
2.2 實驗內容
2.3 壓電薄膜頂電極制備
2.4 壓電薄膜性能表征
2.4.1 相結構表征
2.4.2 顯微結構表征
2.4.3 電學性能表征
2.4.4 高壓拉曼表征
2.4.5 電子結構表征
2.5 PMUT 有限元模型的建模與仿真
2.5.1 有限元方法
2.5.2 COMSOL 建模仿真流程
2.5.3 PMUT 三維有限元模型的建立
2.6 器件結構性能表征
第 3 章 壓電薄膜的晶體結構與電性能研究
3.1 引言
3.2 PZT 薄膜的晶體結構與電學性能
3.3 Sc0.29Al0.71N 薄膜的晶體結構及其在高壓下的演化
3.4 本章小結
第 4 章 基于 PZT 薄膜的 PMUT 建模與性能調控
4.1 引言
4.2 基于 PZT 薄膜 PMUT 的建模仿真
4.3 模態選擇及性能參數評估
4.4 壓電層對 PMUT 性能的影響
4.4.1 壓電層厚度對 PMUT 性能的影響
4.4.2 壓電層面積對 PMUT 性能的影響
4.4.3 基于不同壓電材料的 PMUT 性能參數對比
4.5 頂部電極對 PMUT 性能的影響
4.5.1 電極面積對 PMUT 性能的影響
4.5.2 電極形狀對 PMUT 性能的影響
4.5.3 電極材料對 PMUT 性能的影響
4.6 底部空腔對 PMUT 性能的影響
4.6.1 底部空腔直徑對 PMUT 性能的影響
4.6.2 底部空腔形狀對 PMUT 性能的影響
4.7 襯底頂層硅厚度對 PMUT 性能的影響
4.8 PMUT 動態特性仿真
4.9 本章小結
第 5 章 基于 Sc0.29Al0.71N 薄膜的 PMUT 建模與性能調控
5.1 引言
5.2 基于 Sc0.29Al0.71N 薄膜 PMUT 的建模仿真
5.3 幾何結構對 PMUT 性能的影響
5.3.1 頂部電極對 PMUT 性能的影響
5.3.2 底部空腔對 PMUT 性能的影響
5.3.3 襯底刻蝕深度對 PMUT 性能的影響
5.4 PMUT 動態特性仿真
5.5 采用新型壓電材料的 PMUT 模型探索
目錄 上海師范大學碩士學位論文
5.6 本章小結
第 6 章 PMUT 器件制備與性能表征
6.1 引言
6.2 PMUT 器件制備
6.3 器件結構表征
6.4 位移頻率響應測試
6.5 脈沖回波測試
6.6 本章小結
第 7 章 總結與展望
7.1 總結
本論文選取 PMUT 重要壓電材料 PZT 薄膜以及具有高性能的 Sc0.29Al0.71N薄膜展開了晶體結構及電學性能的研究,分別建立了基于這兩種壓電薄膜的高頻PMUT 三維有限元模型,通過探究 PMUT 幾何結構參數對其性能的影響從而實現了性能調控,并制備得到了高頻 PMUT 原型器件。本文的主要結論有:
。1)以 PZT 薄膜/Pt/Ti/SiO2/Si 和 Sc0.29Al0.71N 薄膜/Mo/SiO2/SOI 為對象對其相結構、顯微結構、電子結構、電學性能等方面進行了研究,結果顯示,PZT薄膜結晶質量良好,其壓電響應明顯,常溫下 1 kHz 時 PZT 薄膜的相對介電常數為 2338,介電損耗僅為 0.027.Sc0.29Al0.71N 薄膜各層分界清晰,表現為六方相多晶薄膜,計算得到其晶格參數 a 和 c 分別為 3.0997 ? 和 4.9569 ?.此外,研究了 Sc0.29Al0.71 薄膜的晶體結構在高壓下的演變行為,在 20 GPa 壓力下并沒有發生纖鋅礦到巖鹽礦的相變,這說明該薄膜的耐高壓特性優良,硬度較高。具有高性能的壓電薄膜為研制高性能壓電微機械超聲換能器的提供了基礎。
。2)采用有限元分析軟件 COMSOL Multiphysics,分別建立了基于 PZT 薄膜和 Sc0.29Al0.71N 薄膜的高頻 PMUT 三維模型,針對 PMUT(0,1)模態,充分研究了 PMUT 結構中的壓電薄膜厚度和尺寸、頂部電極直徑和形狀、底部空腔直徑和形狀、襯底頂層硅厚度等多種幾何參數對 PMUT 性能的影響,實現了性能調控,其中底部空腔直徑和頂層硅厚度對 PMUT 諧振頻率、靜態靈敏度影響較大。
此外,研究了水域下 PMUT 模型的動態傳輸接收特性。經過幾何結構優化,基于 PZT 薄膜的 PMUT 模型的諧振頻率可達 22.12 MHz,有效機電耦合系數(????eff2 )為 5.13%,當反射物距離 PMUT 表面中心 300 μm 處時,相對脈沖回波靈敏度級約為-44.7 dB.
。3)建立了基于 Sc0.29Al0.71N 薄膜的 PMUT 三維有限元模型,經過模型幾何優化,其諧振頻率可達 23.565 MHz,有效機電耦合系數(????eff2 )為 2.5%,當反射物距離 PMUT 表面中心 300 μm 處時,相對脈沖回波靈敏度級約為-50.3 dB.
此外,還嘗試將沿[011]方向極化的 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-0.30PT)單晶薄膜應用于 PMUT 有限元模型中,探索了在不同頂部電極和底部空腔形狀配置下的 PMUT 模型性能表現。研究發現,這種新型壓電材料以及新型幾何結構為今后實現 PMUT 性能的提升提供了可能。
。4)依據 PMUT 建模仿真優化得到的幾何結構參數制備了基于 PZT 薄膜PMUT 單元及 50×50 陣列原型器件。PMUT 單元底部空腔刻蝕情況良好,測試第 7 章 總結與展望 上海師范大學碩士學位論文68得到單元器件(0,1)模態下的諧振頻率為 25.87 MHz,回波信號最大幅值為 4.14mV.本論文制備的 PMUT 原型器件滿足了高分辨率超聲成像應用的高頻需求,這為進一步研制出新型高性能 PMUT 器件積累經驗。
7.2 展望
鑒于目前已經取得的研究結果,為進一步實現具有高頻高性能的 PMUT,如下工作仍需在此研究基礎上有待開展:
。1)進一步優化 PMUT 器件制備加工工藝,制備得到基于 Sc0.29Al0.71N 薄膜的高性能 PMUT 單元及陣列原型器件。
。2)研究具有更高組分的 ScxAl1-xN 壓電薄膜的晶體結構及壓電性能,探究高壓電性能背后的物理機制。
。3)設計并建立具有新型幾何結構的高性能 PMUT 陣列模型,研究 PMUT陣列模型的旁瓣指數、軸向聲強等頻域發射性能以及聲場特性。
參考文獻
[1] 萬明習。 生物醫學超聲學[M]. 北京:科學出版社, 2010.
[2] Drinkwater B W, Wilcox P D. Ultrasonic arrays for non-destructive evaluation: A review. NDT& e International[J]. 2006, 39(7): 525-541.
[3] Jiang X, Kim K, Zhang S, et al. High-temperature piezoelectric sensing. Sensors[J]. 2014,14(1): 144-169.
[4] Watson B, Friend J, Yeo L. Piezoelectric ultrasonic micro/milli-scale actuators. Sensors andActuators A: Physical[J]. 2009, 152(2): 219-233.
[5] Qiu Y, Wang H, Demore C E M, et al. Acoustic devices for particle and cell manipulation andsensing. Sensors[J]. 2014, 14(8): 14806-14838.
[6] Coakley W T, Bardsley D W, Grundy M A, et al. Cell manipulation in ultrasonic standing wavefields. Journal of Chemical Technology & Biotechnology[J]. 1989, 44(1): 43-62.
[7] Qiu Y, Gigliotti J V, Wallace M, et al. Piezoelectric micromachined ultrasound transducer(PMUT) arrays for integrated sensing, actuation and imaging. Sensors[J]. 2015, 15(4): 8020-8041.
[8] 高 世 橋 , 曲 大 成 . 微 機 電 系 統 (MEMS) 技 術 的 研 究 與 應 用 . 科 技 導 報 [J]. 2004,22(0404):17-21.
[9] 包興臻。 基于 MEMS 技術的集成 LED 微陣列器件研究[D]. 長春:中國科學院長春光學精密機械與物理研究所, 2017.
[10] 田文超。 微機電系統(MEMS)[M]. 西安:西安電子科技大學出版社,2009. 8-12
[11] Oralkan O, Bayram B, Yaralioglu G G, et al. Experimental characterization of collapse-modeCMUT operation. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control[J].2006, 53(8): 1513-1523.
[12] Khuri-Yakub B T, Oralkan ?. Capacitive micromachined ultrasonic transducers for medicalimaging and therapy. Journal of Micromechanics and Microengineering[J]. 2011, 21(5):054004.
[13] Jang J H, Rasmussen M F, Bhuyan A, et al. Dual-mode integrated circuit for imaging and HIFUwith 2D CMUT arrays. 2015 IEEE International Ultrasonics Symposium (IUS) [C]. UnitedStates of America: IEEE, 2015. 1-4.
[14] Jang J H, Chang C, Rasmussen M F, et al. Integration of a dual-mode catheter for ultrasoundimage guidance and HIFU ablation using a 2D CMUT array. 2017 IEEE InternationalUltrasonics Symposium (IUS) [C]. United States of America: IEEE, 2017. 1-4.
[15] Liao W, Liu W, Rogers J E, et al. Piezeoelectric micromachined ultrasound tranducer array forphotoacoustic imaging. 2013 Transducers & Eurosensors XXVII: The 17th InternationalConference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS &EUROSENSORS XXVII) [C]. United States of America: IEEE, 2013. 1831-1834.
[16] Lu Y, Heidari A, Horsley D A. A high fill-factor annular array of high frequency piezoelectricmicromachined ultrasonic transducers. Journal of Microelectromechanical Systems[J]. 2014,24(4): 904-913.
[17] Sadeghpour S, Kraft M, Puers R. Design and fabrication strategy for an efficient lead zirconatetitanate based piezoelectric micromachined ultrasound transducer. Journal of Micromechanicsand Microengineering[J]. 2019, 29(12): 125002.
[18] Sammoura F, Smyth K, Kim S G. Optimizing the electrode size of circular bimorph plates withdifferent boundary conditions for maximum deflection of piezoelectric micromachinedultrasonic transducers. Ultrasonics[J]. 2013, 53(2): 328-334.
[19] Akasheh F, Myers T, Fraser J D, et al. Development of piezoelectric micromachined ultrasonictransducers. Sensors and Actuators A: Physical[J]. 2004, 111(2-3): 275-287.
[20] Muralt P, Ledermann N, Paborowski J, et al. Piezoelectric micromachined ultrasonictransducers based on PZT thin films. IEEE Transactions on Ultrasonics Ferroelectrics andFrequency Control[J]. 2005, 52(12): 2276-2288.
[21] Akasheh F, Fraser J D, Bose S, et al. Piezoelectric micromachined ultrasonic transducers:Modeling the influence of structural parameters on device performance. IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control[J]. 2005, 52(3): 455-468.
[22] Vernet J L, Steichen W, Lardat R, et al. PMUTS design optimization for medical probesapplications. 2001 IEEE Ultrasonics Symposium Proceedings An International Symposium(Cat. No. 01CH37263) [C]. United States of America: IEEE, 2001. 899-902.
[23] 劉鑫鑫。 氮化鋁薄膜 MEMS 壓電超聲換能器設計及應用[D]. 杭州:浙江大學,2019.
[24] Lu Y, Wang Q, Horsley D A. Piezoelectric micromachined ultrasonic transducers withincreased coupling coefficient via series transduction. 2015 IEEE International UltrasonicsSymposium (IUS)[C]. United States of America: IEEE, 2015: 1-4.
[25] Rozen O, Block S T, Shelton S E, et al. Air-coupled aluminum nitride piezoelectricmicromachined ultrasonic transducers at 0.3 MHz to 0.9MHz. 2015 28th IEEE InternationalConference on Micro Electro Mechanical Systems (MEMS)[C]. United States of America:IEEE, 2015: 921-924.
[26] Sammoura F, Akhbari S, Lin L. An analytical solution for curved piezoelectric micromachinedultrasonic transducers with spherically shaped diaphragms. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control[J], 2014, 61(9): 1533-1544.
[27] Akhbari S, Sammoura F, Eovino B, et al. Bimorph piezoelectric micromachined ultrasonictransducers. Journal of Microelectromechanical Systems[J]. 2016, 25(2): 326-336.
[28] Lu Y. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing[D].California: University of California, 2015.
[29] Das N C, Taysing-Lara M, Olver K A, et al. Flip Chip Bonding of 68×68 MWIR LED Arrays.IEEE Transactions on Electronics Packaging Manufacturing[J]. 2009, 32(1): 9-13.
[30] Jung J, Lee W, Kang W, et al. Review of piezoelectric micromachined ultrasonic transducersand their applications. Journal of Micromechanics and Microengineering[J]. 2017, 27(11):113001.
[31] Wang M, Zhou Y, Randles A. Enhancement of the transmission of piezoelectric micromachinedultrasonic transducer with an isolation trench. Journal of Microelectromechanical Systems[J].2016, 25(4): 691-700.
[32] Akhbari S, Sammoura F, Eovino B, et al. Bimorph piezoelectric micromachined ultrasonictransducers. Journal of Microelectromechanical Systems[J]. 2016, 25(2): 326-336.
[33] Przybyla R, Izyumin I, Kline M, et al. An ultrasonic rangefinder based on an AlN piezoelectricmicromachined ultrasound transducer. SENSORS, 2010 IEEE[C]. United States of America:IEEE, 2010: 2417-2421.
[34] Dausch D E, Gilchrist K H, Carlson J B, et al. In vivo real-time 3-D intracardiac echo usingPMUT arrays. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control[J].上海師范大學碩士學位論文 參考文獻712014, 61(10): 1754-1764.
[35] Gijsenbergh P, Halbach A, Jeong Y, et al. Characterization of polymer-based piezoelectricmicromachined ultrasound transducers for short-range gesture recognition applications.Journal of Micromechanics and Microengineering[J]. 2019, 29(7): 074001.
[36] Donald I, Macvicar J, Brown T G. Investigation of abdominal masses by pulsed ultrasound.The Lancet[J]. 1958, 271(7032): 1188-1195.
[37] Fenster A, Downey D B. 3-D ultrasound imaging: A review. IEEE Engineering in Medicineand Biology Magazine[J]. 1996, 15(6): 41-51.
[38] Ter Haar G R. High intensity focused ultrasound for the treatment of tumors.Echocardiography[J]. 2001, 18(4): 317-322.
[39] 杜功煥, 朱哲民, 龔秀芬。 聲學基礎[M]. 南京:南京大學出版社, 2001.
[40] Curie J, Curie P. Développement par compression de l'électricité polaire dans les cristauxhémièdres à faces inclinées. Bulletin de minéralogie[J]. 1880, 3(4): 90-93.
[41] Lippmann M G. On the principle of the conservation of electricity. The London, Edinburgh,and Dublin Philosophical Magazine and Journal of Science[J]. 1881, 12(73): 151-154.
[42] Kholkin A L, Pertsev N A, Goltsev A V. Piezoelectric and Acoustic Materials for TransducerApplications[M]. Boston: Springer, 2008. 17-38.
[43] 馮若。 超聲手冊[M]. 南京:南京大學出版社, 1999.
[44] 張福學。 現代壓電學。上冊[M]. 北京:科學出版社, 2005.
[45] Akhbari S, Sammoura F, Shelton S, et al. Highly responsive curved aluminum nitride PMUT.2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)[C].
United States of America: IEEE, 2014: 124-127.
[46] Jung J, Annapureddy V, Hwang G T, et al. 31-mode piezoelectric micromachined ultrasonictransducer with PZT thick film by granule spraying in vacuum process. Applied PhysicsLetters[J]. 2017, 110(21): 212903.
[47] Przybyla R, Izyumin I, Kline M, et al. An ultrasonic rangefinder based on an AlN piezoelectricmicromachined ultrasound transducer. SENSORS, 2010 IEEE[C]. United States of America:IEEE, 2010: 2417-2421.
[48] Yang Y, Zhou D, Li X, et al. Parameter Optimization for Preparing c-Oriented ScAlN ThinFilms. Integrated Ferroelectrics[J]. 2015, 167(1): 17-23.
[49] Jung J, Lee W, Kang W, et al. Review of piezoelectric micromachined ultrasonic transducersand their applications. Journal of Micromechanics and Microengineering[J]. 2017, 27(11):113001.
[50] Muralt P. PZT thin films for microsensors and actuators: Where do we stand?. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control [J]. 2000, 47(4): 903-915.
[51] Kim T, Kim J, Dalmau R, et al. High-temperature electromechanical characterization of AlNsingle crystals. IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control[J].2015, 62(10): 1880-1887.
[52] Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: Review of materials, properties,and applications. Journal of Applied Physics[J]. 2006, 100(5): 051606.
[53] Khan A, Abas Z, Kim H S, et al. Piezoelectric thin films: an integrated review of transducersand energy harvesting. Smart Materials and Structures[J]. 2016, 25(5): 053002.
[54] 郭嘉騏。 壓電微機械超聲換能器及其陣列性能提升方法研究[D]. 上海:上海交通大學,2018.
[55] Farrer N, Bellaiche L. Properties of hexagonal ScN versus wurtzite GaN and InN. PhysicalReview B[J]. 2002, 66(20): 201203.
[56] Ranjan V, Bellaiche L, Walter E J. Strained hexagonal ScN: A material with unusual structuraland optical properties. Physical Review Letters[J]. 2003, 90(25): 257602.
[57] Alsaad A, Ahmad A. Piezoelectricity of ordered (ScxGa1-xN) alloys from first principles. TheEuropean Physical Journal B-Condensed Matter and Complex Systems[J], 2006, 54(2): 151-156.
[58] Hardy M T, Downey B P, Nepal N, et al. Epitaxial ScAlN grown by molecular beam epitaxyon GaN and SiC substrates. Applied Physics Letters[J]. 2017, 110(16): 162104.
[59] Akiyama M, Kamohara T, Kano K, et al. Enhancement of piezoelectric response in scandiumaluminum nitride alloy thin films prepared by dual reactive cosputtering. AdvancedMaterials[J]. 2009, 21(5): 593-596.
[60] Akiyama M, Kano K, Teshigahara A. Influence of growth temperature and scandiumconcentration on piezoelectric response of scandium aluminum nitride alloy thin films. AppliedPhysics Letters[J]. 2009, 95(16): 162107.
[61] Wingqvist G, Tasnadi F, Zukauskaite A, et al. Increased electromechanical coupling in w-ScxAl1? xN. Applied Physics Letters[J]. 2010, 97(11): 112902.
[62] Moreira M, Bjurstr?m J, Katardjev I, et al. Aluminum scandium nitride thin-film bulk acousticresonators for wide band applications. Vacuum[J]. 2011, 86(1): 23-26.
[63] Zhang S, Fu W Y, Holec D, et al. Elastic constants and critical thicknesses of ScGaN and ScAlN.Journal of Applied Physics[J]. 2013, 114(24): 243516.
[64] Yang J, Meng X, Yang C, et al. Influence of N2/Ar-flow ratio on crystal quality and electricalproperties of ScAlN thin film prepared by DC reactive magnetron sputtering. Applied SurfaceScience[J]. 2013, 282: 578-582.
[65] Yang Y, Zhou D, Li X, et al. Parameter Optimization for Preparing c-Oriented ScAlN ThinFilms. Integrated Ferroelectrics[J]. 2015, 167(1): 17-23.
[66] Lu Y, Reusch M, Kurz N, et al. Elastic modulus and coefficient of thermal expansion ofpiezoelectric Al1?xScxN (up to x=0.41) thin films. APL Materials[J]. 2018, 6(7): 076105.
[67] Kurz N, Lu Y, Kirste L, et al. Temperature dependence of the pyroelectric coefficient of AlScNthin films. Physical Status Solidi A [J]. 2018, 215(13): 1700831.
[68] Wang Q, Lu Y, Mishin S, et al. Design, fabrication, and characterization of scandium aluminumnitride-basedpiezoelectricmicromachinedultrasonictransducers.JournalofMicroelectromechanical Systems[J]. 2017, 26(5): 1132-1139.
[69] Peng J, Lau S T, Chao C, et al. PMN-PT single crystal thick films on silicon substrate for high-frequency micromachined ultrasonic transducers. Applied Physics A[J]. 2010, 98(1): 233-237.
[70] Fei C, Yang Y, Guo F, et al. PMN-PT single crystal ultrasonic transducer with half-concavegeometric design for IVUS imaging. IEEE Transactions on Biomedical Engineering[J], 2017,65(9): 2087-2092.
[71] Lu Y. Development and characterization of piezoelectric AlScN-based alloys forelectroacoustic applications[D]. Freiburg im Breisgau: Albert-Ludwigs-Universit?t, 2019.
[72] Birkholz M. Thin film Analysis by X-ray Scattering[M]. Germany: Wiley-VCH, 2006.
[73] Goldstein J I, Newbury D E, Michael J R, et al. Scanning electron microscopy and X-raymicroanalysis[M]. Germany: Springer, 2017.
[74] Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters[J]. 1986,56(9): 930.
[75] Rugar D, Hansma P. Atomic force microscopy. Physics Today[J]. 1990, 43(10): 23-30.
[76] Güthner P, Dransfeld K. Local poling of ferroelectric polymers by scanning force microscopy.Applied Physics Letters[J]. 1992, 61(9): 1137-1139.
[77] Jesse S, Mirman B, Kalinin S V. Resonance enhancement in piezoresponse force microscopy:Mapping electromechanical activity, contact stiffness, and Q factor. Applied Physics Letters[J].2006, 89(2): 022906.
[78] Jesse S, Baddorf A P, Kalinin S V. Dynamic behaviour in piezoresponse force microscopy.Nanotechnology[J]. 2006, 17(6): 1615.
[79] Liebermann R C. Multi-anvil, high pressure apparatus: a half-century of development andprogress. High Pressure Research[J]. 2011, 31(4): 493-532.
[80] Itskevich E S. High-pressure cells for studies of properties of solids. Instruments AndExperimental Techniques[J]. 1999, 42(2): 291-302.
[81] Briggs D. Practical surface analysis. Auger and X-Ray Photoelecton Spectroscory[J]. 1990, 1:151-152.
[82] Roosendaal S J, Van Asselen B, Elsenaar J W, et al. The oxidation state of Fe(100) after initialoxidation in O2. Surface Science[J]. 1999, 442(3): 329-337.
[83] 張巧珍。 基于有限元方法的氮化鋁薄膜層狀結構聲表面波器件研究[D]. 上海:上海交通大學,2018.
[84] 王勖成。 有限單元法[M]. 北京:清華大學出版社,2003.
[85] 馬慧。 COMSOL Multiphysics 基本操作指南和常見問題解答[M]. 北京:人民交通出版社,2009.
[86] 劉杰坤,馬修水,馬勰。 激光多普勒測振儀研究綜述。激光雜志[J]. 2014(12):5-9.
[87] Kuball M, Hayes J M, Shi Y, et al. Raman scattering studies on single-crystalline bulk AlN:temperature and pressure dependence of the AlN phonon modes. Journal of Crystal Growth[J].2001, 231(3): 391-396.
[88] Manjón F J, Errandonea D, Romero A H, et al. Lattice dynamics of wurtzite and rocksalt AlNunder high pressure: Effect of compression on the crystal anisotropy of wurtzite-typesemiconductors. Physical Review B[J]. 2008, 77(20): 205204.
[89] Yakovenko E V, Gauthier M, Polian A. High-pressure behavior of the bond-bending mode ofAIN. Journal of Experimental and Theoretical Physics[J]. 2004, 98(5): 981-985.
[90] Liu W, He L, Wang X, et al. 3D FEM analysis of high-frequency AlN-based PMUT arrays oncavity SOI. Sensors[J]. 2019, 19(20): 4450.
[91] Trolier-McKinstry S, Muralt P. Thin film piezoelectrics for MEMS. Journal ofElectroceramics[J]. 2004, 12(1): 7-17.
[92] Choi H S, Anderson M J, Ding J L, et al. A two-dimensional electromechanical composite platemodel for piezoelectric micromachined ultrasonic transducers (PMUTs)。 Journal ofMicromechanics and Microengineering[J]. 2009, 20(1): 015013.
[93] Choi H, Ding J L, Bandyopadhyay A, et al. Finite element analysis of piezoelectric thin filmmembrane structures. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control[J], 2007, 54(10): 2036-2044.
[94] Sano K, Karasawa R, Yanagitani T. ScAlN Thick-Film Ultrasonic Transducer in 40-80MHz.IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control[J]. 2018, 65(11):2097-2102.
[95] Jiang X, Lu Y, Tang H Y, et al. Monolithic ultrasound fingerprint sensor. Microsystems &Nanoengineering[J]. 2017, 3(1): 1-8.
[96] Wilm M, Reinhardt A, Laude V, et al. Three-dimensional modelling of micromachined-ultrasonic-transducer arrays operating in water. Ultrasonics[J]. 2005, 43(6): 457-465.
[97] Meeker T R. Publication and proposed revision of ANSI/IEEE standard 176-1987. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control[J]. 1996, 43(5): 717-772.
[98] Jung J, Kim S, Lee W, et al. Fabrication of a two-dimensional piezoelectric micromachinedultrasonic transducer array using a top-crossover-to-bottom structure and metal bridgeconnections. Journal of Micromechanics and Microengineering[J]. 2013, 23(12): 125037.
[99] 國家食品藥品監督管理局。YY/T 1089-2007 單元式脈沖回波超聲換能器的基本電聲特性和測量方法[S].北京。中國標準出版社,2007.
[100] Sadeghpour S, Kraft M, Puers R. Design and fabrication strategy for an efficient leadzirconate titanate based piezoelectric micromachined ultrasound transducer. Journal ofMicromechanics and Microengineering[J]. 2019, 29(12): 125002.
[101] Caro M A, Zhang S, Riekkinen T, et al. Piezoelectric coefficients and spontaneouspolarization of ScAlN. Journal of Physics: Condensed Matter[J]. 2015, 27(24): 245901.
[102] Shanthi M, Lim L C, Rajan K K, et al. Complete sets of elastic, dielectric, and piezoelectricproperties of flux-grown [011]-poled Pb(Mg1/3Nb2/3)O3-(28-32)%PbTiO3 single crystals.Applied Physics Letters[J]. 2008, 92(14): 142906.
致謝
懷揣對研究生生活的憧憬踏入校園,轉眼間已到畢業離別之季。在此,謹向所有幫助過我與鼓勵過我的各位老師、同學和親友表達衷心的謝意!
感謝我的導師趙祥永研究員,他學識淵博,治學嚴謹,對科研具有敏銳的洞察力,從本論文工作的選題到最終完成離不開趙老師的悉心指導。趙老師對工作精益求精的態度和為人師表的風范潛移默化地影響著我,除了科研工作上對我的精心教導,趙老師在生活上也予以我無微不至的關心,為我的人生道路點亮明燈,促使我不斷地成長和進步。在此,鄭重地向我的恩師趙老師道一聲感謝!
感謝上海師范大學的張巧珍老師在我攻讀研究生期間給予的指導、幫助和關心,是張老師帶我走入仿真的大門,她言傳身教,盡職盡責,潛精研思的精神和嚴謹縝密的思維使我深受感染,感謝張老師耐心解答我的每一個問題,反復認真修改我的文章,遇到困難迎難而上的積極態度讓我受益良多,她是良師亦是益友,在此,向張老師道一聲深深的感謝!
本論文工作的完成離不開各位老師和師兄師姐的指導與幫助。感謝上海師范大學的王飛飛老師、王濤老師、秦曉梅老師、杜偉杰老師、唐艷學老師和段志華老師在科研上對我的幫助。感謝中科院蘇州納米所的李加東老師、苗斌老師以及南京理工大學汪堯進老師在實驗方面給予我的幫助。感謝上海同步輻射光源的郭智老師和閆帥老師在測試方面予以的幫助。感謝姚蒙師兄和郭嘉騏師兄在仿真上給予我無私的指導和幫助,感謝劉旭強師兄在高壓實驗方面提供的幫助。還要感謝上海師范大學的薛賽東師兄、謝青秀師姐、胡鈺晴師姐、周星彤師姐、吳揚師兄、李強師兄以及其他師兄師姐在科研生活中帶給我的幫助和鼓勵。
衷心感謝研究生期間并肩走過的同學和朋友,感謝我的舍友郭文雨、厙文呈和閆明園,感謝她們的陪伴與鼓勵,優秀的她們是我學習的榜樣。感謝王潔、黃小麗、王巨杉、黎梓浩、鄭群飛、肖俊杰、楊梅和李立新在科研上給予的無私幫助以及給我的研究生生活帶來了無數樂趣。感謝劉會靈師妹、周迅師妹、吳延輝師弟等其他師弟師妹對我的關心與幫助。
最后,特別感謝我的父母一直以來對我的支持、鼓勵和理解,感謝他們給予我溫馨和睦的家庭氛圍讓我在愛中成長,在此,向我的父母道一聲:辛苦了!還要感謝各位親友對我無條件的支持與鼓勵,正是有了這些愛與支持才使我堅定自信地做自己,我將在未來的道路上繼續勇往直前!
(如您需要查看本篇畢業設計全文,請您聯系客服索。